Convergence rates with inexact non-expansive operators

نویسندگان

  • Jingwei Liang
  • Mohamed-Jalal Fadili
  • Gabriel Peyré
چکیده

In this paper, we present a convergence rate analysis for the inexact Krasnosel’skĭı– Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration–complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of fixed points. The obtained iteration–complexity result can be applied to analyze the convergence rate of various monotone operator splitting methods in the literature, including the Forward–Backward, the Generalized Forward–Backward, Douglas–Rachford, ADMM and Primal–Dual splitting methods. For these methods, we also develop easily verifiable termination criteria for finding an approximate solution, which can be seen as a generalization of the termination criterion for the classical gradient descent method. We finally develop a parallel analysis for the non-stationary Krasnosel’skĭı–Mann iteration. The usefulness of our results is illustrated by applying them to a large class of structured monotone inclusion and convex optimization problems. Experiments on some large scale inverse problems in signal and image processing problems are shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces

begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...

متن کامل

Convergence Criterion of Inexact Methods for Operators with Hölder Continuous Derivatives

Convergence criterion of the inexact methods is established for operators with hölder continuous first derivatives. An application to a special nonlinear Hammerstein integral equation of the second kind is provided.

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2016